ÌâÄ¿ÄÚÈÝ
£¨2011•²ýÆ½Çø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=x2-ax+a£¨x¡ÊR£©£¬ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬´æÔÚ0£¼x1£¼x2£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®Èôn¡ÊN*£¬f£¨n£©ÊÇÊýÁÐ{an}µÄǰnÏîºÍ£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãck•ck+1£¼0µÄÕýÕûÊýkµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áîcn=1-
£¨nΪÕýÕûÊý£©£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£»
£¨¢ó£©ÉèTn=
£¨n¡Ý2ÇÒn¡ÊN*£©£¬Ê¹²»µÈʽ
¡Ü(1+T2)•(1+T3)¡(1+Tn)•
ºã³ÉÁ¢£¬ÇóÕýÕûÊýmµÄ×î´óÖµ£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãck•ck+1£¼0µÄÕýÕûÊýkµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áîcn=1-
| 4 |
| an |
£¨¢ó£©ÉèTn=
| 1 |
| an+6 |
| ||
| 30 |
| 1 | ||
|
·ÖÎö£º£¨I£©Óɺ¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬Öª¡÷=a2-4a=0£¬µÃa=0»òa=4£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨II£©·¨Ò»£ºÓÉÌâÉècn=
£¬ÒòΪn¡Ý3ʱ£¬cn+1-cn=
-
=
£¾0£¬ËùÒÔn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
·¨¶þ£ºÓÉÌâÉècn=
£¬Öªµ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬µÃ
•
£¼0£¬½âµÃn=2»òn=4£®ÓÉ´ËÄܹ»ÍƵ¼³öÊýÁÐ{cn}±äºÅÊýΪ3£®
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
¡Ü(1+
)(1+
)¡(1+
)•
£¬×ª»¯Îª
¡Ü
•
•
¡
•
•
£®ÓÉ´ËÈëÊÖÄܹ»ÍƵ¼³öÕýÕûÊýmµÄ×î´óֵΪ5£®
£¨II£©·¨Ò»£ºÓÉÌâÉècn=
|
| 4 |
| 2n-5 |
| 4 |
| 2n-3 |
| 8 |
| (2n-5)(2n-3) |
·¨¶þ£ºÓÉÌâÉècn=
|
| 2n-9 |
| 2n-5 |
| 2n-7 |
| 2n-3 |
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
| 1 |
| 2n+1 |
| ||
| 30 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 | ||
|
| ||
| 30 |
| 6 |
| 5 |
| 8 |
| 7 |
| 10 |
| 9 |
| 2n |
| 2n-1 |
| 2n+2 |
| 2n+1 |
| 1 | ||
|
½â´ð£º½â£º£¨I£©¡ßº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚÓÐÇÒÖ»ÓÐÒ»¸öÁãµã
¡à¡÷=a2-4a=0µÃa=0»òa=4£¨1·Ö£©
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö¹Ê²»´æÔÚ0£¼x1£¼x2£¬
ʹµÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢ £¨2·Ö£©
×ÛÉÏ£¬µÃa=4£¬f£¨x£©=x2-4x+4£®£¨3·Ö£©
¡àSn=n2-4n+4
¡àan=Sn-Sn-1=
£¨4·Ö£©
£¨II£©½â·¨Ò»£ºÓÉÌâÉècn=
¡ßn¡Ý3ʱ£¬cn+1-cn=
-
=
£¾0
¡àn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®
¡ßc4=-
£¼0£¬
ÓÉ1-
£¬µÃn¡Ý5¿ÉÖª
¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐ1¸ö±äºÅÊý£»
ÓÖ¼´¡à´Ë´¦±äºÅÊýÓÐ2¸ö
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3 £¨9·Ö£©
½â·¨¶þ£ºÓÉÌâÉècn=
µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬
µÃ
•
£¼0£¬
¼´
£¼n£¼
»ò
£¼n£¼
£¬
½âµÃn=2»òn=4£®
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àn=1ʱҲÓÐc1•c2£¼0
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3¡£¨9·Ö£©
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
¡Ü(1+
)(1+
)¡(1+
)•
¿Éת»¯Îª
¡Ü
•
•
¡
•
•
£®
Éèg£¨n£©=
•
•
¡
•
•
£¬
Ôòµ±n¡Ý2ÇÒn¡ÊN*£¬
=
=
•
=
=
£¾
=
=
=1£®
ËùÒÔg£¨n+1£©£¾g£¨n£©£¬¼´µ±nÔö´óʱ£¬g£¨n£©Ò²Ôö´ó£®
Ҫʹ²»µÈʽ
¡Ü(1+T2)(1+T3)¡(1+Tn)•
¶ÔÓÚÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè
¡Üg(n)min¼´¿É£®
ÒòΪg(n)min=g(2)•
=
•
=
£¬
ËùÒÔ
¡Ü
£®
¼´ m¡Ü
=5
ËùÒÔ£¬ÕýÕûÊýmµÄ×î´óֵΪ5£®£¨13·Ö£©
¡à¡÷=a2-4a=0µÃa=0»òa=4£¨1·Ö£©
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö¹Ê²»´æÔÚ0£¼x1£¼x2£¬
ʹµÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢ £¨2·Ö£©
×ÛÉÏ£¬µÃa=4£¬f£¨x£©=x2-4x+4£®£¨3·Ö£©
¡àSn=n2-4n+4
¡àan=Sn-Sn-1=
|
£¨II£©½â·¨Ò»£ºÓÉÌâÉècn=
|
¡ßn¡Ý3ʱ£¬cn+1-cn=
| 4 |
| 2n-5 |
| 4 |
| 2n-3 |
| 8 |
| (2n-5)(2n-3) |
¡àn¡Ý3ʱ£¬ÊýÁÐ{cn}µÝÔö£®
¡ßc4=-
| 1 |
| 3 |
ÓÉ1-
| 4 |
| 2n-5 |
¼´n¡Ý3ʱ£¬ÓÐÇÒÖ»ÓÐ1¸ö±äºÅÊý£»
ÓÖ¼´¡à´Ë´¦±äºÅÊýÓÐ2¸ö
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3 £¨9·Ö£©
½â·¨¶þ£ºÓÉÌâÉècn=
|
µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬
µÃ
| 2n-9 |
| 2n-5 |
| 2n-7 |
| 2n-3 |
¼´
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 2 |
| 9 |
| 2 |
½âµÃn=2»òn=4£®
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àn=1ʱҲÓÐc1•c2£¼0
×ÛÉϵÃÊýÁÐ{cn}¹²ÓÐ3¸ö±äºÅÊý£¬¼´±äºÅÊýΪ3¡£¨9·Ö£©
£¨¢ó£©n¡Ý2ÇÒn¡ÊN*ʱ£¬Tn=
| 1 |
| 2n+1 |
| ||
| 30 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 | ||
|
¿Éת»¯Îª
| ||
| 30 |
| 6 |
| 5 |
| 8 |
| 7 |
| 10 |
| 9 |
| 2n |
| 2n-1 |
| 2n+2 |
| 2n+1 |
| 1 | ||
|
Éèg£¨n£©=
| 6 |
| 5 |
| 8 |
| 7 |
| 10 |
| 9 |
| 2n |
| 2n-1 |
| 2n+2 |
| 2n+1 |
| 1 | ||
|
Ôòµ±n¡Ý2ÇÒn¡ÊN*£¬
| g(n+1) |
| g(n) |
| ||||||||||||||
|
=
| 2n+4 |
| 2n+3 |
| ||
|
| 2n+4 | ||
|
=
| 2n+4 | ||
|
| 2n+4 | ||
|
| 2n+4 | ||
|
| 2n+4 |
| 2n+4 |
ËùÒÔg£¨n+1£©£¾g£¨n£©£¬¼´µ±nÔö´óʱ£¬g£¨n£©Ò²Ôö´ó£®
Ҫʹ²»µÈʽ
| ||
| 30 |
| 1 | ||
|
¶ÔÓÚÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ö»Ðè
| ||
| 30 |
ÒòΪg(n)min=g(2)•
| 1 | ||
|
| 6 |
| 5 |
| ||
| 7 |
6
| ||
| 35 |
ËùÒÔ
| ||
| 30 |
6
| ||
| 35 |
¼´ m¡Ü
| 180 |
| 35 |
| 1 |
| 7 |
ËùÒÔ£¬ÕýÕûÊýmµÄ×î´óֵΪ5£®£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¼ÆËãÁ¿´ó£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼ÆËãÄÜÁ¦µÄÅàÑø£®±¾Ìâ¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿