题目内容
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数,
),以原点
为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
与
的直角坐标方程;
(2)当
与
有两个公共点时,求实数
的取值范围.
【答案】(1)曲线
的直角坐标方程为
;(2)
.
【解析】试题分析:(1)第一问直接利用恒等消参法把曲线
的参数方程化为直角坐标方程,利用极直互化的公式把
的极坐标方程化为直角坐标;(2)第二问,画出曲线曲线
对应的半圆弧,再画出曲线
对应的直线,利用数形结合分析得到t的取值范围.
试题解析:(1)∵曲线
的参数方程为
(
为参数,
),
∴曲线
的普通方程为:
(
,
),
∵曲线
的极坐标方程为
,
∴曲线
的直角坐标方程为
.
(2)∵曲线
的普通方程为:
(
,
)为半圆弧,由曲线
于
有两个公共点,则当
与
相切时,得
,整理得
,
∴
或
(舍去),
当
过点
时,
,所以t=-1.
∴当
与
有两个公共点时,
.
【题目】某食品集团生产的火腿按行业生产标准分成8个等级,等级系数
依次为1,2,3,…,8,其中
为标准
,
为标准
.已知甲车间执行标准
,乙车间执行标准
生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数
的概率分布列如下表,若
的数学期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)为了分析乙车间的等级系数
,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数
的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
的概率.
【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(I)请将两家公司各一名推销员的日工资
(单位: 元) 分别表示为日销售件数
的函数关系式;
(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为
,乙公司该推销员的日工资为
(单位: 元),将该频率视为概率,请回答下面问题:
某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
![]()
【答案】(I)见解析; (Ⅱ)见解析.
【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.
详解:(I)由题意得,甲公司一名推销员的日工资
(单位:元) 与销售件数
的关系式为:
.
乙公司一名推销员的日工资
(单位: 元) 与销售件数
的关系式为: ![]()
(Ⅱ)记甲公司一名推销员的日工资为
(单位: 元),由条形图可得
的分布列为
| 122 | 124 | 126 | 128 | 130 |
| 0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
记乙公司一名推销员的日工资为
(单位: 元),由条形图可得
的分布列为
| 120 | 128 | 144 | 160 |
| 0.2 | 0.3 | 0.4 | 0.1 |
∴![]()
∴仅从日均收入的角度考虑,我会选择去乙公司.
点睛:求解离散型随机变量的数学期望的一般步骤为:
第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;
第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;
第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;
第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值
【题型】解答题
【结束】
19
【题目】如图,在四棱锥
中,底面
为菱形,
平面
,
,
,
,
分别是
,
的中点.
![]()
(1)证明:
;
(2)设
为线段
上的动点,若线段
长的最小值为
,求二面角
的余弦值.