题目内容
已知数列{an}的各项均为正数,其前n项和为Sn,且Sn=
,n∈N*.
(1)求证:数列{an}是等差数列;
(2)设bn=
,Tn=b1+b2+…+bn,求证:Tn<1;
(3)设cn=n•2an,Mn=c1+c2+…+cn,求Mn.
| an(an+1) |
| 2 |
(1)求证:数列{an}是等差数列;
(2)设bn=
| 1 |
| 2Sn |
(3)设cn=n•2an,Mn=c1+c2+…+cn,求Mn.
分析:(1)利用an=
即等差数列的定义即可得出;
(2)利用等差数列的前n项和公式及“裂项求和”即可得出;
(3)利用“错位相减法”及其等比数列的前n项和公式即可得出.
|
(2)利用等差数列的前n项和公式及“裂项求和”即可得出;
(3)利用“错位相减法”及其等比数列的前n项和公式即可得出.
解答:(1)证明:∵Sn=
,n∈N*,n=1时,a1=S1=
,∴a1=1或a1=0又an>0,∴a1=1.
由
,得2an=2(Sn-Sn-1)=
-
+an-an-1,
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,∴an-an-1=1,n≥2,
∴数列{an}是以1为首项,1为公差的等差数列;
(2)证明:由(1)知an=n,Sn=
,∴bn=
=
,
∴Tn=b1+b2+…+bn=
+
+…+
=1-
+
-
+…+
-
=1-
<1.
(3)cn=n•2n,∴Mn=1•2+2•22+3•23+…+n•2n,…①
∴2Mn=1•22+2•23+…+(n-1)•2n+n•2n+1…②
由①-②得-Mn=2+22+23+…2n-n•2n+1=
-n•2n+1=(1-n)2n+1-2,
∴Mn=(n-1)•2n+1+2.
| an(an+1) |
| 2 |
| a1(a1+1) |
| 2 |
由
|
| a | 2 n |
| a | 2 n-1 |
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,∴an-an-1=1,n≥2,
∴数列{an}是以1为首项,1为公差的等差数列;
(2)证明:由(1)知an=n,Sn=
| n(n+1) |
| 2 |
| 1 |
| 2Sn |
| 1 |
| n(n+1) |
∴Tn=b1+b2+…+bn=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
(3)cn=n•2n,∴Mn=1•2+2•22+3•23+…+n•2n,…①
∴2Mn=1•22+2•23+…+(n-1)•2n+n•2n+1…②
由①-②得-Mn=2+22+23+…2n-n•2n+1=
| 2-2n+1 |
| 1-2 |
∴Mn=(n-1)•2n+1+2.
点评:熟练掌握利用an=
求an、等差数列的定义、等差数列的前n项和公式及“裂项求和”、“错位相减法”及其等比数列的前n项和公式等是解题的关键.
|
练习册系列答案
相关题目