题目内容
已知函数f(x)=2sin(x+
)cos(x+
)+
sin2x
(1)求f(x)的最小正周期.
(2)若a∈[0,
],f(a)=2,求a的值.
| π |
| 4 |
| π |
| 4 |
| 3 |
(1)求f(x)的最小正周期.
(2)若a∈[0,
| π |
| 2 |
分析:(1)利用三角函数的恒等变换化简函数的解析式为2sin(2x+
),故最小正周期为
.
(2)由a∈[0,
],f(a)=2,可得2a+
=2kπ+
,k∈z,由此求得a的值.
| π |
| 6 |
| 2π |
| 2 |
(2)由a∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
解答:解:(1)函数f(x)=2sin(x+
)cos(x+
)+
sin2x=sin(2x+
)+
sin2x
=cos2x+
sin2x=2sin(2x+
),故最小正周期为
.
(2)若a∈[0,
],f(a)=2,则2sin(2a+
)=2,∴2a+
=2kπ+
,a=kπ+
,k∈z.
∴a=
.
| π |
| 4 |
| π |
| 4 |
| 3 |
| π |
| 2 |
| 3 |
=cos2x+
| 3 |
| π |
| 6 |
| 2π |
| 2 |
(2)若a∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
∴a=
| π |
| 6 |
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的周期性及求法,根据三角函数的值求角,化简函数的解析式,是解题的突破口.
练习册系列答案
相关题目