题目内容
已知复数z1=sin2x+λi,z2=m+(m-
cos2x)i(λ,m,x∈R,),且z1=z2.
(1)若λ=0且0<x<π,求x的值;
(2)设λ=f(x),已知当x=α时,λ=
,试求cos(4α+
)的值.
| 3 |
(1)若λ=0且0<x<π,求x的值;
(2)设λ=f(x),已知当x=α时,λ=
| 1 |
| 2 |
| π |
| 3 |
(1)∵z1=z2
∴
∴λ=sin2x-
cos2x(2分)
若λ=0则sin2x-
cos2x=0得tan2x=
(4分)
∵0<x<π,
∴0<2x<2π
∴2x=
,或2x=
∴x=
或
(6分)
(2)∵λ=f(x)=sin2x-
cos2x=2(
sin2x-
cos2x)
=2(sin2xcos
-cos2xsin
)=2sin(2x-
)(8分)
∵当x=α时,λ=
∴2sin(2α-
)=
,sin(2α-
)=
,sin(
-2α)=-
(9分)
∵cos(4α+
)=cos2(2α+
)=2cos2(2α+
)-1=2sin2(
-2α)-1--(11分)
∴cos(4α+
)=2×(-
)2-1=-
.(12分)
∴
|
∴λ=sin2x-
| 3 |
若λ=0则sin2x-
| 3 |
| 3 |
∵0<x<π,
∴0<2x<2π
∴2x=
| π |
| 3 |
| 4π |
| 3 |
∴x=
| π |
| 6 |
| 2π |
| 3 |
(2)∵λ=f(x)=sin2x-
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=2(sin2xcos
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∵当x=α时,λ=
| 1 |
| 2 |
∴2sin(2α-
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
| π |
| 3 |
| 1 |
| 4 |
∵cos(4α+
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
∴cos(4α+
| π |
| 3 |
| 1 |
| 4 |
| 7 |
| 8 |
练习册系列答案
相关题目