题目内容
某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回的从中依次抽取2件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.
分析:(1)因为有5件是次品,第一次抽到次品,有5中可能,产品共有20件,不考虑限制,任意抽一件,有20中可能,所以概率为两者相除.
(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可.
(3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为
(2)因为是不放回的从中依次抽取2件,所以第一次抽到次品有5种可能,第二次抽到次品有4种可能,第一次和第二次都抽到次品有5×4种可能,总情况是先从20件中任抽一件,再从剩下的19件中任抽一件,所以有20×19种可能,再令两者相除即可.
(3)因为第一次抽到次品,所以剩下的19件中有4件次品,所以,抽到次品的概率为
| 4 |
| 19 |
解答:解:设“第一次抽到次品”为事件A,“第二次都抽到次品”为事件B,事件A和事件B相互独立.
依题意得:
(1)第一次抽到次品的概率为P(A)=
=
(2)第一次和第二次都抽到次品的概率为P(AB)=
=
(3)在第一次抽到次品的条件下,第二次抽到次品的概率为:P(B|A)=
=
÷
=
依题意得:
(1)第一次抽到次品的概率为P(A)=
| 5 |
| 20 |
| 1 |
| 4 |
(2)第一次和第二次都抽到次品的概率为P(AB)=
| 5×4 |
| 20×19 |
| 1 |
| 19 |
(3)在第一次抽到次品的条件下,第二次抽到次品的概率为:P(B|A)=
| P(AB) |
| P(A) |
| 1 |
| 19 |
| 1 |
| 4 |
| 4 |
| 19 |
点评:本题考查了有条件的概率的求法,做题时要认真分析,找到正确方法.
练习册系列答案
相关题目