题目内容
已知函数f(x)=2sin(ωx+
)(ω>0)的最小正周期为4π,则该函数的图象
- A.关于点(
,0)对称 - B.关于点(
,0)对称 - C.关于直线x=
对称 - D.关于直线x=
对称
B
分析:先根据最小正周期的值求出w的值确定函数的解析式,然后令ωx+
=kπ求出x的值,得到原函数的对称点,然后对选项进行验证即可.
解答:由函数f(x)=2sin(ωx+
)(ω>0)的最小正周期为4π得ω=
,
由
x+
=kπ得x=
,对称点为(
,0)(k∈z),当k=1时为(
,0),
故选B.
点评:本题主要考查正弦函数的最小正周期的求法和对称性.
分析:先根据最小正周期的值求出w的值确定函数的解析式,然后令ωx+
解答:由函数f(x)=2sin(ωx+
由
故选B.
点评:本题主要考查正弦函数的最小正周期的求法和对称性.
练习册系列答案
相关题目