题目内容
设函数,则a的值为
(1)依次计算
,
(2)猜想的结果,并用数学归纳法证明论.
已知椭圆C:的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2
(1)求椭圆C的方程;
(2)设圆T:(x﹣t)2+y2=,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.
“mn<0”是“方程mx2+ny2=1表示焦点在y轴上的双曲线”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
有甲、乙、丙、丁、戊位同学,求:
(1)位同学站成一排,有多少种不同的方法?
(2)位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的方法?
(3)将位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?
用反证法证明命题:若整系数一元二次方程有有理数根,那么、、中至少有一个是偶数时,下列假设中正确的是( )
A.假设、、都是偶数 B.假设、、都不是偶数
C.假设、、至多有一个偶数 D.假设、、至多有两个偶数
已知i为虚数单位,复数,则复数在复平面上的对应点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
执行如右图所示的程序框图,输出的s值为( )
A.—3 B.— C. D.2
设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定