题目内容
数列{an}的通项公式an=n2+n,则数列{
}的前10项和为( )
| 1 |
| an |
A.
| B.
| C.
| D.
|
∵an=n2+n,∴
=
=
-
,
∴数列{
}的前10项和=(1-
)+(
-
)+…+(
-
)=1-
=
.
故选B.
| 1 |
| an |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 10 |
| 1 |
| 11 |
| 1 |
| 11 |
| 10 |
| 11 |
故选B.
练习册系列答案
相关题目