题目内容
△ABC中,角A,B,C所对的边分别是a,b,c,且cosA=
.
(1)求sin2
+cos2A的值;
(2)若b=2,△ABC的面积S=3,求a的值.
| 4 |
| 5 |
(1)求sin2
| B+C |
| 2 |
(2)若b=2,△ABC的面积S=3,求a的值.
分析:(1)利用诱导公式及二倍角的余弦公式对式子化简,sin2
+cos2A=cos2
+cos2A=
+2cos2A-1,代入可求
(2)由cosA=
可求sinA,代入三角形的面积公式 S=
bcsinA可求c,然后利用余弦定理可得a2=b2+c2-2bccosA可求a
| B+C |
| 2 |
| A |
| 2 |
| 1+cosA |
| 2 |
(2)由cosA=
| 4 |
| 5 |
| 1 |
| 2 |
解答:解:(1)sin2
+cos2A=cos2
+cos2A
=
+2cos2A-1
=
+2×
-1=
(6分)
(2)∵cosA=
∴sinA=
S=
bcsinA=
×2c×
=3
∴c=5,a2=b2+c2-2bccosA=4+25-2×2×5×
=13
∴a=
(7分)
| B+C |
| 2 |
| A |
| 2 |
=
| 1+cosA |
| 2 |
=
1+
| ||
| 2 |
| 16 |
| 25 |
| 59 |
| 50 |
(2)∵cosA=
| 4 |
| 5 |
| 3 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 5 |
∴c=5,a2=b2+c2-2bccosA=4+25-2×2×5×
| 4 |
| 5 |
∴a=
| 13 |
点评:本题主要考查了三角函数的诱导公式及二倍角公式、同角平分关系及余弦定理在三角函数求值化简中的应用.
练习册系列答案
相关题目