题目内容
(2011•丰台区二模)函数y=
sinxcosx-sin2x的最小正周期为
.
| 3 |
π
π
,最大值为| 1 |
| 2 |
| 1 |
| 2 |
分析:把函数解析式第一项利用二倍角的正弦函数公式化简,第二项利用二倍角的余弦函数公式化简,然后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,找出ω的值,代入周期公式T=
,求出函数的周期,最后由正弦函数的值域即可得到函数的最大值.
| 2π |
| ω |
解答:解:函数y=
sinxcosx-sin2x
=
sin2x-
=
sin2x+
cos2x-
=sin(2x+
)-
,
∵ω=2,∴T=
=π;
又-1≤sin(2x+
)≤1,即sin(2x+
)的最大值为1,
∴函数的最大值为1-
=
.
故答案为:π;
| 3 |
=
| ||
| 2 |
| 1-cos2x |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=sin(2x+
| π |
| 6 |
| 1 |
| 2 |
∵ω=2,∴T=
| 2π |
| 2 |
又-1≤sin(2x+
| π |
| 6 |
| π |
| 6 |
∴函数的最大值为1-
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:π;
| 1 |
| 2 |
点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及正弦函数的值域,灵活运用三角函数的恒等变换把函数解析式化为一个角的三角函数是解本题的关键.
练习册系列答案
相关题目