搜索
题目内容
为非零向量,“函数
为偶函数”是“
”的
A.充分但不必要条件
B.必要但不充分条件
C.充要条件
D.既不充分也不必要条件
试题答案
相关练习册答案
C
分析:已知非零向量
,根据f(-x)=f(x),求出向量
的关系,再利用必要条件和充分条件的定义进行判断.
解:∵函数
=(|
|x)
2
+(|
|)
2
+2
x,
又f(x)为偶函数,
f(-x)=f(x),
∴f(-x)=(-|
|x)
2
+(|
|)
2
-2
x,
∴f(-x)=f(x),∴2
x=0,
∴
=0,
∴
,
若
,则
=0,∴f(-x)=f(x),
∴f(x)为偶函数,
故选C.
练习册系列答案
天舟文化精彩寒假团结出版社系列答案
哈皮寒假合肥工业大学出版社系列答案
寒假作业接力出版社系列答案
快乐假期寒假作业内蒙古人民出版社系列答案
快乐假期寒假作业新疆人民出版社系列答案
导学导思导练寒假评测新疆科学技术出版社系列答案
综合寒假作业本浙江教育出版社系列答案
本土寒假云南人民出版社系列答案
寒假作业南方日报出版社系列答案
1加1阅读好卷系列答案
相关题目
(本小题满分12分)在
中,
分别为角
的对边,向量
,且
.
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
如图放置的边长为
的正方形
的顶点
、
分别在
轴、
轴(含坐标原点) 上滑动,则
的最大值为( )
A.
B.
C.
D.
(本小题满分13分)
如图,已知
、
为平面上的两个定点
,
,且
,
(
为动点,
是
和
的交点).
(Ⅰ)建立适当的平面直角坐标系求出点
的轨迹方程;
(Ⅱ)若点
的轨迹上存在两个不同的点
、
,且线段
的中垂线与直线
相交于一点
,证明
<
(
为
的中点).
已知
,则
为: ( )
A.
B.
C.
D.6
设
的夹角为
;则
等于______________.
定义: |
×
|=|
|·|
|·sinθ,其中θ为向量
与
的夹角,
若|
|="2," |
| ="3,"
·
=-4,则|
×
|=___________
在△ABC中,已知向量=(cos 18°,cos 72°),=(2cos 63°,2cos 27°),则△ABC的面积等于
( )
A. B.
C. D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案