题目内容

设定义在R上的函数f(x)=|x|,则f(x)


  1. A.
    是奇函数,在(0,+∞)上是增函数
  2. B.
    是偶函数,在(0,+∞)上是增函数
  3. C.
    是奇函数,在(0,+∞)上是减函数
  4. D.
    是偶函数,在(0,+∞)上是减函数
B
分析:先对x进行分类讨论,化掉绝对值符号,画出函数的图象,是一条折线,观察图即可得出答案.
解答:解:由于f(x)=
其图象:如图.
它关于y轴对称,是偶函数,在(0,+∞)上是增函数.
故选B.
点评:本题考查函数的奇偶性与单调性,涉及到绝对值函数,一次函数的单调性.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网