题目内容
(2012•大连二模)已知数列{an)满足a1=0,对任意k∈N*,有a2k-1,a2k,a2k+1成公差为k的等差数列,数列bn=
,则{bn}的前n项和Sn=
| (2n+1)2 |
| a2n+1 |
4n+
| n |
| n+1 |
4n+
.| n |
| n+1 |
分析:依题意,可求得a2,a3,…,a9,…,从而利用累加法可求得a2n+1=n2+n,代入bn=
,用分组求和与裂项法求和即可求得答案.
| (2n+1)2 |
| a2n+1 |
解答:解:当k=1时,a1,a2,a3成公差为1的等差数列,由于
a1=0,故a2=1,a3=2;
同理可得当k=2,3,4时,可以求得a4=4,a5=6,a6=9,a7=12,a8=16,a9=20;
∴a3-a1=2,a5-a3=4,a7-a5=6,…
∴a2n+1-a2n-1=2n,
∴将上述n个等式相加得:a2n+1-a1=
=n2+n,
∴a2n+1=n2+n,
∴bn=
=
=
=4+
=4+(
-
),
∴Sn=b1+b2+…+bn
=4n+[(1-
)+(
-
)+…+(
-
)]
=4n+(1-
)
=4n+
.
故答案为:4n+
.
a1=0,故a2=1,a3=2;
同理可得当k=2,3,4时,可以求得a4=4,a5=6,a6=9,a7=12,a8=16,a9=20;
∴a3-a1=2,a5-a3=4,a7-a5=6,…
∴a2n+1-a2n-1=2n,
∴将上述n个等式相加得:a2n+1-a1=
| (2+2n)n |
| 2 |
∴a2n+1=n2+n,
∴bn=
| (2n+1)2 |
| a2n+1 |
| (2n+1)2 |
| n2+n |
| 4(n2+n)+1 |
| n2+n |
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn
=4n+[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=4n+(1-
| 1 |
| n+1 |
=4n+
| n |
| n+1 |
故答案为:4n+
| n |
| n+1 |
点评:本题考查数列的求和,着重考查等差数列的通项公式,求得a2n+1=n2+n是关键,也是难点,考查裂项法求和与分组求和,属于难题.
练习册系列答案
相关题目