题目内容

已知圆C的参数方程为
x=cosα
y=1+sinα
(a为参数)以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为psinθ=1,则直线l与圆C的交点的直角坐标系为
 
分析:先根据同角三角函数关系消去参数α,求出圆的标准方程,再根据直线的极坐标方程求出直线的普通方程,然后联立圆的方程与直线方程求出交点坐标即可.
解答:解:由题设知,在直角坐标系下,直线l的方程为y=1,圆C的方程为x2+(y-1)2=1.
又解方程组
x2+(y-1)2=1
y=1

x=-1
y=1
x=1
y=1

故所求交点的直角坐标为(-1,1),(1,1).
点评:本题主要考查了圆的参数方程,以及直线与圆的方程的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网