题目内容
设
是定义在
上的偶函数,对任意的
,都有
,且当
时,
,若关于
的方程![]()
在区间
内恰有三个不同实根,则实数
的取值范围是 .
【答案】
![]()
【解析】解:设x∈[0,2],则-x∈[-2,0],∴f(-x)=(
)-x-1=2x-1,
∵f(x)是定义在R上的偶函数,∴f(x)=f(-x)=2x-1.
∵对任意x∈R,都有f(x)=f(x+4),
∴当x∈[2,4]时,(x-4)∈[-2,0],∴f(x)=f(x-4)=(
)x-4-1;
及当x∈[4,6]时,(x-4)∈[0,2],∴f(x)=f(x-4)=2x-4-1.
∵若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有三个不同的实数根,
∴函数y=f(x)与函数y=loga(x+2)在区间(-2,6]上恰有三个交点,通过画图可知:恰有三个交点的条件是
得到参数a的范围是
,故答案为![]()
练习册系列答案
相关题目