题目内容
已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时的极值为0.求常数a,b的值并求f(x)的单调区间.
f′(x)=3x2+6ax+b,由题意知
,解得a=2,b=9…6分
所以f (x)=x3 +6x2 +9 x+4,f′(x)=3x2+12x+9
由f′(x)>0可得x<-3或x>-1,所以增区间为(-∞,-3)和(-1,+∞)
由f′(x)<0可得-3<x<-1,所以减区间为(-3,-1)…13分
|
所以f (x)=x3 +6x2 +9 x+4,f′(x)=3x2+12x+9
由f′(x)>0可得x<-3或x>-1,所以增区间为(-∞,-3)和(-1,+∞)
由f′(x)<0可得-3<x<-1,所以减区间为(-3,-1)…13分
练习册系列答案
相关题目