题目内容
【题目】已知函数
.
(1)若函数
的最大值是最小值的
倍,求实数
的值;
(2)若函数
存在零点,求函数的零点.
【答案】(1)
或
或
或
.(2)当
时,零点为
;当
时,零点为![]()
【解析】
(1)将
整理为
,换元可得
,
;根据对称轴位置的不同,分别在
,
,
和
四种情况下构造最大值和最小值关系的方程,解方程求得结果;(2)根据(1)中最值的取值范围可知若存在零点,必有
或
,从而可知
的取值,进而得到零点.
(1)![]()
当
时,
,令
,![]()
①当
时,
,
;
有
,解得:
或![]()
由
得:
②当
时,
,
;
有
,解得:
或![]()
由
得:![]()
③当
时,
,
;
有
,解得:![]()
由
得:![]()
④当
时,
,![]()
有
,解得:![]()
由
得:![]()
综上所述:
或
或
或![]()
(2)由(1)知,
,
,![]()
若函数
存在零点,则必有:
或![]()
①当
时,
,此时函数
的零点为:
;
②当
时,
,此时函数
的零点为:![]()
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
![]()
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
![]()
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式:
,其中![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
【题目】为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共
名进行调查,调查结果如下:
支持 | 反对 | 合计 | |
男性 |
|
|
|
女性 |
|
|
|
合计 |
|
|
|
(1)根据以上数据,判断是否有
的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;
(2)现从参与调查的女户主中按分层抽样的方法抽取
人进行调查,分别求出所抽取的
人中持“支持”和“反对”态度的人数;
(3)现从(2)中所抽取的
人中,再随机抽取
人赠送小品,求恰好抽到
人持“支持”态度的概率?
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
【题目】某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 5 | 9 | 11 | 9 | 7 | 9 |
满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.