题目内容
数列{an}中,a1=1,且an+1=2an+1,又设bn=an+1
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)设cn=
(n∈N*),求数列{cn}的前n项的和Sn.
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式;
(3)设cn=
| n+1 |
| an+1 |
(1)∵a1=1,且an+1=2an+1,bn=an+1
∴an+1+1=2(an+1)
∴
=2,a1+1=2
∴数列{bn}是首项为2,公比为2的等比数列.
(2)∵bn=2×2n-1=2n
∴an=bn-1=2n-1
(3)∵cn=
=
.
∴Sn=
+
+
+…+
∴
Sn=
+
+…+
+
∴两式相减可得:
Sn=
+
+
+…+
-
=1+
-
=
-
.
∴Sn=3-
.
∴an+1+1=2(an+1)
∴
| bn+1 |
| bn |
∴数列{bn}是首项为2,公比为2的等比数列.
(2)∵bn=2×2n-1=2n
∴an=bn-1=2n-1
(3)∵cn=
| n+1 |
| an+1 |
| n+1 |
| 2n |
∴Sn=
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
∴
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| n+1 |
| 2n+1 |
∴两式相减可得:
| 1 |
| 2 |
| 2 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| ||||
1-
|
| n+1 |
| 2n+1 |
| 3 |
| 2 |
| n+3 |
| 2n+1 |
∴Sn=3-
| n+3 |
| 2n |
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|