题目内容

(08年华师一附中二次压轴)已知f(x)是定义在R上的不恒为0的函数,且对任意的abR,恒有f(ab)=af(b)+bf(a).

(Ⅰ)求f(0),f(1)的值;

(Ⅱ)判断f(x)的奇偶性,并证明你的结论;

(Ⅲ)若f(2)=2,nN*,求数列{un}的前n项和Sn.

解析:(Ⅰ)解:f(0)=f(0×0)=0?f(0)+0?f(0)=0.

又∵f(1)=f(1×1)=1?f(1)+1?f(1)=2f(1),∴f(1)=0.

(Ⅱ)∵f(1)=f[(-1)2]=-1?f(-1)-1?f(-1)=-2f(-1)=0,

∴f(-1)=0

∴f(-x)=f(-1?x)=-1?f(x)+x?f(-1)=-f(x),

∴f(x)为奇函数

(Ⅲ)解法一:∵0=f(1)=f(2×2-1)=2f(2-1)+2-1f(2)=2 f(2-1)+1,∴f(2-1)=-………9分

又f(2-n)=f(2-n-1?2)= 2-n-1f(2)+2f(2-n-1)= 2-n+2f(2-n-1)

∴2n+1f(2-n-1)-2nf(2-n)=-1

∴数列{2nf(2-n)}是以2f(2-1)=-1为首项,以-1为公差的等差数列

∴2nf(2-n)=-1+(n-1)?(-1)=-n

∴un==-

∴Sn==-1

解法二:∵f(2n+1)=f(2n?2)= 2nf(2)+2f(2n)= 2n+1+2f(2n)

=1+,∴=1

∴数列{}是以=1为首项,以1为公差的等差数列

=1+(n-1)?1=n,∴f(2n)= 2n?n

又∵f(1)=f(2n×2n)=2nf(2n)+2nf(2n)=0

∴un===-

∴Sn==-1

解法三:由f(a2)=af(a)+af(a)=2af(a),f(a3)=a2f(a)+af (a2)=3a2f(a),猜测f(an)=nan1f(a).

下面用数学归纳法证明

①当n=1时,f(a1)=1?a0?f(a),公式成立;

②假设当n=k时公式成立,即f(ak)=kak1f(a),那么当n=k+1时,f(ak+1)=akf(a)+af(ak)=akf(a)=(k+1)akf(a),公式仍成立.

由①②可知,对任意n∈N,f(an)=nan1f(a)成立

∴un==f()

又f(1)==f(2?)=2f()+f(2)= 2f()+1=0,∴f()=- 

∴un=-

∴Sn==-1

解法四:当ab≠0时,=+,令g(x)=,则g(ab)=g(a)+g(b).

∴g(an)=ng(a),所以f(an)=an?g(an)=nang(a)=nan-1f(a).

以下同解法三

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网