搜索
题目内容
用反证法证明命题:“若整系数一元二次方程ax
2
+bx+c=0有有理根,那么a,b,c存在偶数”时,否定结论应为( )
A.a,b,c都是偶数
B.a,b,c都不是偶数
C.a,b,c中至多一个是偶数
D.a,b,c中至多有两个是偶数
试题答案
相关练习册答案
分析:
对结论否定,存在的否定是都不是,即可得出结论.
解答:
解:对结论否定,“存在”的否定是“都不是”,即否定结论应为a,b,c都不是偶数,
故选B.
点评:
本题考查反证法,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
初中生学业评价指导用书系列答案
阅读计划初中课外现代文拓展阅读系列答案
伴你学习新课程单元过关练习系列答案
中考综合学习评价与检测系列答案
新课程初中学习能力自测丛书系列答案
初中毕业升学考试指导系列答案
学生课程精巧训练系列答案
名师点睛学练考系列答案
南大励学小学生英语四合一阅读组合训练系列答案
学业测评课时练测加全程测控系列答案
相关题目
4、用反证法证明命题“a•b(a,b∈Z*)是偶数,那么a,b中至少有一个是偶数.”那么反设的内容是
假设a,b都是奇数(a,b都不是偶数)
.
用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为( )
A.a,b,c,d中至少有一个正数
B.a,b,c,d全为正数
C.a,b,c,d全都大于等于0
D.a,b,c,d中至多有一个负数
用反证法证明命题“如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是
假设CD和EF不平行
假设CD和EF不平行
.
用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是
a、b都不能被2整除
a、b都不能被2整除
.
用反证法证明命题“a、b、c、d中至少有一个是负数”时,假设正确的是( )
A.a、b、c、d都是负数
B.a、b、c、d都是非负数
C.a、b、c、d中至多有一个非负数
D.a、b、c、d中至多有两个是非负数
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案