题目内容
(本小题满分12分)已知数列{an}的前n项和为Sn,且满足
an+2Sn·Sn-1=0(n≥2),a1=
.
(1)求证:{
}是等差数列;
(2)求an表达式;
(3)若bn=2(1-n)an(n≥2),求证:b22+b32+…+bn2<1.
【解】(1)∵-an=2SnSn-1,∴-Sn+Sn-1=2SnSn-1(n≥2)
Sn≠0,∴
-
=2,又
=
=2,∴{
}是以2为首项,公差为2的等差数列.
(2)由(1)
=2+(n-1)2=2n,∴Sn=![]()
当n≥2时,an=Sn-Sn-1=-![]()
n=1时,a1=S1=
,∴an=![]()
(3)由(2)知bn=2(1-n)an=![]()
∴b22+b32+…+bn2=
+
+…+
<
+
+…+![]()
=(1-
)+(
-
)+…+(
-
)=1-
<1.
练习册系列答案
相关题目