题目内容
“指数函数y=ax(a>0且a≠1)是R上的增函数,而y=(
)x是指数函数,所以y=(
)x是R上的增函数”,上述三段论推理过程中导致结论错误的是( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、大前提 | B、小前提 |
| C、大、小前提 | D、推理形式 |
分析:指数函数y=ax(a>0且a≠1)是R上的增函数,这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,即大前提是错误的.
解答:解:指数函数y=ax(a>0且a≠1)是R上的增函数,
这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,
大前提是错误的,
∴得到的结论是错误的,
故选A.
这个说法是错误的,要根据所给的底数的取值不同分类说出函数的不同的单调性,
大前提是错误的,
∴得到的结论是错误的,
故选A.
点评:本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.
练习册系列答案
相关题目
“因为指数函数y=ax是增函数(大前提),而y=(
)x是指数函数(小前提),所以y=(
)x是增函数(结论)”,上面推理的错误是( )
| 1 |
| 3 |
| 1 |
| 3 |
| A、大前提错导致结论错 |
| B、小前提错导致结论错 |
| C、推理形式错导致结论错 |
| D、大前提和小前提错都导致结论错 |
若指数函数y=ax在[-1,1]上的最大值与最小值的差是1,则底数a等于( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|