题目内容
等差数列{an}的公差d≠0,且a1,a3,a4成等比数列,Sn是数列{an}的前n项和,则
的值为( )
| S4-S2 |
| S5-S3 |
分析:由等差数列{an}的公差d≠0,且a1,a3,a4成等比数列,知(a1+2d)2=a1•(a1+3d),解得a1=-4d,由此能求出
的值.
| S4-S2 |
| S5-S3 |
解答:解:∵等差数列{an}的公差d≠0,且a1,a3,a4成等比数列,
∴(a1+2d)2=a1•(a1+3d),
解得a1=-4d,
∴
=
=
=3.
故选A.
∴(a1+2d)2=a1•(a1+3d),
解得a1=-4d,
∴
| S4-S2 |
| S5-S3 |
(4a1+
| ||||
(5a1+
|
=
| (-16d+6d)-(-8d+d) |
| (-20d+10d)-(-12d+3d) |
=3.
故选A.
点评:本题考查等差数列的通项公式和前n项和的应用,是基础题.解题时要认真审题,仔细解答,注意等比中项的合理运用.
练习册系列答案
相关题目