题目内容
15、对一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有
30
种(用数字作答).分析:最短边选取一种颜色有3种情况.如果最短边的两个邻边颜色相同有2种情况;这时最后两个边也有2种情况.如果最短边的两个邻边颜色不同有2种情况,这时最后两个边有3种颜色.根据计数原理得到结果.
解答:解:由题意知本题是一个分步和分类计数问题,
最短边选取一种颜色有3种情况.
如果最短边的两个邻边颜色相同有2种情况;
这时最后两个边也有2种情况.
如果最短边的两个邻边颜色不同有2种情况;
这时最后两个边有3种颜色.
∴方法共有3(2×2+2×3)=30种.
故答案为:30
最短边选取一种颜色有3种情况.
如果最短边的两个邻边颜色相同有2种情况;
这时最后两个边也有2种情况.
如果最短边的两个邻边颜色不同有2种情况;
这时最后两个边有3种颜色.
∴方法共有3(2×2+2×3)=30种.
故答案为:30
点评:本题考查分步计数原理,考查分类计数原理,考查这两个原理的综合应用,考查用排列组合知识解决实际问题,考查和几何图形有关的涂色问题,本题是一个比较典型的问题.
练习册系列答案
相关题目