题目内容
求下列三角函数值
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°;
(2)2sin
-cos4π+tan(-
).
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°;
(2)2sin
| 5π |
| 4 |
| π |
| 4 |
(1)sin(-1380°)cos1110°+cos(-1020°)sin750°
=sin(-360°×4+60°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)
=sin60°cos30°+cos60°sin30°
=sin(60°+30°)
=sin90°
=1;
(2)2sin
-cos4π+tan(-
)
=2sin(π+
)-cos4π-tan
=-2sin
-1-1
=-
-2.
=sin(-360°×4+60°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)
=sin60°cos30°+cos60°sin30°
=sin(60°+30°)
=sin90°
=1;
(2)2sin
| 5π |
| 4 |
| π |
| 4 |
=2sin(π+
| π |
| 4 |
| π |
| 4 |
=-2sin
| π |
| 4 |
=-
| 2 |
练习册系列答案
相关题目
求下列三角函数值
(可用计算器):|
(1) |
(2) |
|
(3)cos398°13′ ; |
(4)tan766°15′ . |