题目内容
| 3 |
| 2 |
分析:由幂函数的图象和性质,我们可得在直线X=1两侧,按逆时针方向,指数函数图象对应的真数部分均由小变大,分析幂函数y=x-
的指数的大小,即可得到结论.
| 3 |
| 2 |
解答:解:由于在直线X=1两侧,按逆时针方向,指数函数图象对应的真数部分均由小变大
而-
<-1
故在直线X=1左侧,幂函数y=x-
的图象经过第III卦限;
在直线X=1右侧,幂函数y=x-
的图象经过第VII卦限;
故选D
而-
| 3 |
| 2 |
故在直线X=1左侧,幂函数y=x-
| 3 |
| 2 |
在直线X=1右侧,幂函数y=x-
| 3 |
| 2 |
故选D
点评:本题考查的知识点是幂函数的图象,其中熟练掌握幂函数的图象和性质,用运动变化的思想分析问题是解答本题的关键.
练习册系列答案
相关题目