题目内容

已知数列{an}满足a1=1,a2=2,对于任意的正整数n都有an-an+1≠1,anan+1an+2=an+an+1+an+2,则S2012=
4023
4023
分析:分别表示出anan+1an+2=an+an+1+an+2,an+1an+2an+3=an+1+an+2+an+3,两式相减可推断出an+3=an,进而可知数列{an}是以3为周期的数列,只要看2006是3的多少倍,然后通过a1=1,a2=2,求得a3,而2012是3的670倍余2,由此能求出S2012
解答:解:依题意可知,anan+1an+2=an+an+1+an+2
an+1an+2an+3=an+1+an+2+an+3
两式相减得an+1an+2(an+3-an)=an+3-an
∵an+1an+2≠1,
∴an+3-an=0,即an+3=an
∴数列{an}是以3为周期的数列,
∵a1a2a3=a1+a2+a3,∴a3=3
∴S2012=670×(1+2+3)+1+2=4023
故答案为:4023.
点评:本题主要考查了数列的递推式和数列的求和问题.本题的关键是找出数列的周期性.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网