题目内容

已知函数f(x)=2cos2x+
3
sin2x+a
(x∈R).
(1)若f(x)有最大值2,求实数a的值;
(2)求函数f(x)的单调递增区间.
(1)f(x)=2cos2x+
3
sin2x+a=1+cos2x+
3
sin2x+a=2sin(2x+
π
6
)+1+a

2x+
π
6
=
π
2
+2kπ
(k∈Z)时,f(x)有最大值,
x=
π
6
+kπ
(k∈Z)时,f(x)有最大值为3+a,
∴3+a=2,解得a=-1.
(2)令-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
,解得kπ-
π
3
≤x≤kπ+
π
6
(k∈Z),
∴函数f(x)的单调递增区间[kπ-
π
3
,kπ+
π
6
]
(k∈Z)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网