题目内容
在△ABC中,角A,B,C所对的边分别是a,b,c,且满足A=45°,cosB=
.
(Ⅰ)求sinC的值;
(Ⅱ)设a=5,求△ABC的面积.
| 3 |
| 5 |
(Ⅰ)求sinC的值;
(Ⅱ)设a=5,求△ABC的面积.
(Ⅰ)∵cosB=
,
∴sinB=
∴sinC=sin(A+B)=sin(45o+B)=
cosB+
sinB=
(或:sinC=sin(135o-B)=
cosB+
sinB=
)
(Ⅱ)法一:由正弦定理得,b=
=
=4
,
∴S△ABC=
absinC=
×5×4
×
=14
法二:由正弦定理得,c=
=
=7,
∴S△ABC=
acsinB=
×5×7×
=14.
| 3 |
| 5 |
∴sinB=
| 4 |
| 5 |
∴sinC=sin(A+B)=sin(45o+B)=
| ||
| 2 |
| ||
| 2 |
7
| ||
| 10 |
(或:sinC=sin(135o-B)=
| ||
| 2 |
| ||
| 2 |
7
| ||
| 10 |
(Ⅱ)法一:由正弦定理得,b=
| asinB |
| sinA |
5×
| ||||
|
| 2 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
7
| ||
| 10 |
法二:由正弦定理得,c=
| asinC |
| sinA |
5×
| ||||
|
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| 5 |
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |