搜索
题目内容
已知双曲线
及点A(
,0)。
(1)求点A到双曲线一条渐近线的距离;
(2)已知点O为原点,点P在双曲线上,△POA为直角三角形,求点P的坐标。
试题答案
相关练习册答案
【答案】
【解析】略
练习册系列答案
海淀黄冈暑假作业合肥工业大学出版社系列答案
快乐暑假快乐学中原农民出版社系列答案
全程解读系列答案
天下无题系列丛书绿色假期暑假作业系列答案
小学生暑假衔接陕西师范大学出版总社系列答案
考易通暑假衔接教材新疆美术摄影出版社系列答案
超能学典暑假接力棒南京大学出版社系列答案
文涛书业假期作业快乐暑假系列答案
七彩假期期末大提升系列答案
一诺书业暑假作业快乐假期云南美术出版社系列答案
相关题目
(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=
(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
•
DB
为定值;
(3)对于双曲线Γ:
x
2
a
2
-
y
2
b
2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x
2
a
2
-
y
2
b
2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y
2
=2px(p>0)及它的顶点;
情形三:椭圆
x
2
a
2
+
y
2
b
2
=1(a>b>0)
及它的顶点.
(2010•昆明模拟)已知双曲线
E:
x
2
a
2
-
y
2
b
2
=1(a>0,b>0)
的渐近线与抛物线C:y=x
2
+1相切于第一象限内的点P.
(I)求点P的坐标及双曲线E的离心率;
(II)记过点P的渐近线为l
1
,双曲线的右焦点为F,过点F且垂直于l
1
的直线l
2
与双曲线E交于A、B两点.若l
2
与抛物线至多有一个公共点,求△PAB面积的最大值.
(2010•昆明模拟)已知双曲线
E:
x
2
a
2
-
y
2
b
2
=1(a>0,b>0)
的渐近线与抛物线C:y=x
2
+1相切于第一象限内的点P.
(I)求点P的坐标及双曲线E的离心率;
(II)记过点P的渐近线为l
1
,双曲线的右焦点为F,过点F且垂直于l
1
的直线l
2
与双曲线E交于A、B两点.当△PAB的面积为
40
3
时,求双曲线E的方程.
已知双曲线
及点A(
,0)。
(1)求点A到双曲线一条渐近线的距离;
(2)已知点O为原点,点P在双曲线上,△POA为直角三角形,求点P的坐标。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案