题目内容
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是等比数列{bn}的第二项、第三项、第四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意正整数n均有
+
+
+…+
=(n+1)an+1成立,求数列{cn}的前n项和Sn.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意正整数n均有
| c1 |
| b1 |
| c2 |
| b2 |
| c3 |
| b3 |
| cn |
| bn |
(1)由题意得(a1+d)(a1+13d)=(a1+4d)2(d>0)
∵a1=1,
∴d=2,
∴an=2n-1,
∵b2=a2=1+2=3,
b3=a5=1+8=9,
∴
,
∴b1=1,q=3,
∴bn=3n-1(5分)
(2)当n=1时,c1=2a2×b1=18;
当n≥2时,
=(n+1)an+1-nan=4n+1,
∴cn=(4n+1)•3n-1,故cn=
,
∴Sn=c1+c2.+…+cn=18+9×3+13×32+17×33+…+(4n-3)×3n-2+(4n+1)×3n-1,①
3Sn=54+9×32+13×33+17×34…+(4n-3)×3n-1+(4n+1)×3n,②
①-②,得-2Sn=-9+4(32+33+34+…+3n-1)-(4n+1)×3n
=-9+4×
-(4n+1)×3n
=-9+2×3n-18-(4n+1)×3n
=-27+(1-4n)×3n,
∴Sn=
×3n+
.
∵a1=1,
∴d=2,
∴an=2n-1,
∵b2=a2=1+2=3,
b3=a5=1+8=9,
∴
|
∴b1=1,q=3,
∴bn=3n-1(5分)
(2)当n=1时,c1=2a2×b1=18;
当n≥2时,
| cn |
| bn |
∴cn=(4n+1)•3n-1,故cn=
|
∴Sn=c1+c2.+…+cn=18+9×3+13×32+17×33+…+(4n-3)×3n-2+(4n+1)×3n-1,①
3Sn=54+9×32+13×33+17×34…+(4n-3)×3n-1+(4n+1)×3n,②
①-②,得-2Sn=-9+4(32+33+34+…+3n-1)-(4n+1)×3n
=-9+4×
| 9(1-3n-2) |
| 1-3 |
=-9+2×3n-18-(4n+1)×3n
=-27+(1-4n)×3n,
∴Sn=
| 4n-1 |
| 2 |
| 27 |
| 2 |
练习册系列答案
相关题目