题目内容
数列4
,8
,16
,32
…,的前n项和为( )
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| A.2n+2-2-n-1 | B.2n+2-2-n-3 |
| C.2n+2+2-n-1 | D.2n+2-2-n-1-1 |
解;根据题意设该数列为{an},前n项之和为Sn,
则an=2n+1+
∴Sn=(4+8+16+…+2n+1)+(
+
+
+…+
)
=
+
=2n+2-2-n-3.
故选B.
则an=2n+1+
| 1 |
| 2n |
∴Sn=(4+8+16+…+2n+1)+(
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=
| 4(1-2n) |
| 1-2 |
| ||||
1-
|
故选B.
练习册系列答案
相关题目
数列4
,8
,16
,32
…,的前n项和为( )
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
| 1 |
| 16 |
| A、2n+2-2-n-1 |
| B、2n+2-2-n-3 |
| C、2n+2+2-n-1 |
| D、2n+2-2-n-1-1 |