题目内容
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}滿足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明:数列{bn}是等差数列;
(Ⅲ)证明:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
分析:(Ⅰ)整理题设递推式得an+1+1=2(an+1),推断出{an+1}是等差数列,进而求得an+1,则an可求.
(Ⅱ)根据题设等式可推断出2[(b1+b2+…+bn)-n]=nbn和2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.两式相减后整理求得bn+2-bn+1=bn+1-bn进而推断出{bn}是等差数列.
(Ⅲ)利用(Ⅰ)中数列{an}的通项公式,利用不等式的传递性,推断出
<
,进而推断出
+
+…+
<
;同时利用不等式的性质推断出
≥-
-
•
,进而代入
+
+…+
证明原式.
(Ⅱ)根据题设等式可推断出2[(b1+b2+…+bn)-n]=nbn和2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.两式相减后整理求得bn+2-bn+1=bn+1-bn进而推断出{bn}是等差数列.
(Ⅲ)利用(Ⅰ)中数列{an}的通项公式,利用不等式的传递性,推断出
| ak |
| ak+1 |
| 1 |
| 2 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| ak |
| ak+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
解答:解:(Ⅰ)∵an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n.
即an=2n-1∈N*).
(Ⅱ)证明:∵4b1-14b2-1…4bn-1=(an+1)bn(n∈N*)
∴4(b1+b2+…+bn)-n=2nbn.
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
(Ⅲ)证明:∵
=
=
<
,k=1,2,n,
∴
+
+…+
<
.
∵
=
=
-
=
-
≥
-
.
,k=1,2,…,n,
∴
+
+…+
≥
-
(
+
+…+
)=
-
(1-
)>
-
,
∴
-
<
+
+…+
<
(n∈N*).
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n.
即an=2n-1∈N*).
(Ⅱ)证明:∵4b1-14b2-1…4bn-1=(an+1)bn(n∈N*)
∴4(b1+b2+…+bn)-n=2nbn.
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,nbn+2-(n+1)bn+1+2=0.
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
(Ⅲ)证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3.2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力.
练习册系列答案
相关题目