题目内容
数列{an}中,a1=1,a2=
,且
+
=
.
(1)求an;
(2)设bn=anan+1,求b1+b2+b3+…bn;
(3)求证:a12+a22+a32+…+an2<4
| 2 |
| 3 |
| 1 |
| an-1 |
| 1 |
| an+1 |
| 2 |
| an |
(1)求an;
(2)设bn=anan+1,求b1+b2+b3+…bn;
(3)求证:a12+a22+a32+…+an2<4
(1)依题意知{
}为等差数列,公差d=
-
=
,
∴
=1+
(n-1),∴an=
.
(2)bn=anan+1=
4(
-
),
∴b1+b2+…+bn=4[(
-
)+(
-
)+…+(
-
)]=4(
-
) =
.
(3)an2=
<
=4(
-
),
∴a12+a22+…+an2<4[(1-
) +(
-
)+…+(
-
)]=4(1-
)<4.
| 1 |
| an |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
∴
| 1 |
| an |
| 1 |
| 2 |
| 2 |
| n+1 |
(2)bn=anan+1=
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴b1+b2+…+bn=4[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 2n |
| n+2 |
(3)an2=
| 4 |
| (n+1)2 |
| 4 |
| n(n+1) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴a12+a22+…+an2<4[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+1 |
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|