题目内容

数列{an}中,a1=1,a2=
2
3
,且
1
an-1
+
1
an+1
=
2
an

(1)求an
(2)设bn=anan+1,求b1+b2+b3+…bn
(3)求证:a12+a22+a32+…+an2<4
(1)依题意知{
1
an
}
为等差数列,公差d=
1
a2
-
1
a1
=
1
2

1
an
=1+
1
2
(n-1)
,∴an=
2
n+1

(2)bn=anan+1=
4
(n+1)(n+2)
4(
1
n+1
-
1
n+2
)

∴b1+b2+…+bn=4[(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2
)]
=4(
1
2
-
1
n+2
) =
2n
n+2

(3)an2=
4
(n+1)2
4
n(n+1)
=4(
1
n+1
-
1
n+2
),
∴a12+a22+…+an2<4[(1-
1
2
) +(
1
2
-
1
3
)+…+(
1
n+1
-
1
n+2
)]
=4(1-
1
n+1
)<4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网