题目内容
已知等比数列{an}的公比不为1,其前n项和为Sn,若向量向量
=(a1,a2),
=(a1,a3),
=(-1,1),满足(4
-
)•
=0,则
=______.
| i |
| j |
| k |
| i |
| j |
| k |
| S5 |
| a1 |
∵向量
=(a1,a2),
=(a1,a3),
=(-1,1),
∴(4
-
)=(3a1,4a2-a3),
∴(4
-
)•
=-3a1+4a2-a3=0
∴3a1+a3=4a2,
∴3+q2=4q,
∴q2-4q+3=0,
∵等比数列{an}的公比不为1,
∴q=3,
∴
=
=
=121,
故答案为:121.
| i |
| j |
| k |
∴(4
| i |
| j |
∴(4
| i |
| j |
| k |
∴3a1+a3=4a2,
∴3+q2=4q,
∴q2-4q+3=0,
∵等比数列{an}的公比不为1,
∴q=3,
∴
| S5 |
| a1 |
| 1-q5 |
| 1-q |
| 1-243 |
| 1-3 |
故答案为:121.
练习册系列答案
相关题目