题目内容

在△ABC中,a,b,c分别是角A、B、C的对边,
m
=(2b-c,cosC),
n
=(a,cosA),且
m
n

(1)求角A的大小;
(2)求y=2sin2B+cos(
π
3
-2B)
的值域.
(1)由
m
n
得(2b-c)•cosA-acosC=0,
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0,2sinBcosA-sin(A+C)=0,
∴2sinBcosA-sinB=0,
A,B∈(0,π)∴sinB≠0,cosA=
1
2
,∴A=
π
3

(2)y=sin2B+cos
π
3
cos2B+sin
π
3
sin2B
,=1-
1
2
cos2B+
3
2
sin2B

=sin(2B-
π
6
)+1

由(1)得0<B<
3
∴-
π
6
<2B-
π
6
6

sin(2B-
π
6
)∈(-
1
2
,1]
y∈(
1
2
,2]

答:角A的大小;函数的值域为y∈(
1
2
,2]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网