题目内容
(2013•唐山一模)已知等比数列{an}满足a1a2=-
,a3=
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
+
+…+
,求数列{
}的前n项的和.
| 1 |
| 3 |
| 1 |
| 9 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
| n+1 |
| 1×2 |
| n+1 |
| 2×3 |
| n+1 |
| n(n+1) |
| bn |
| an |
分析:(I)利用等比数列的通项公式及已知即可解得a1及q,即可得到an;
(II)对于bn提取n+1,再利用裂项求和即可得出bn,即可得到
=n•(-3)n-1.再利用错位相减法及等比数列的前n项和公式即可得出.
(II)对于bn提取n+1,再利用裂项求和即可得出bn,即可得到
| bn |
| an |
解答:解:(Ⅰ)设an=a1qn-1,依题意,有
解得a1=1,q=-
.
∴an=(-
)n-1.
(Ⅱ)bn=
+
+…+
=(n+1)[
+
+…+
]
=(n+1)[(1-
)+(
-
)+…+(
-
)]
=n.
∴
=n•(-3)n-1.
记数列{
}的前n项的和为Sn,则
Sn=1+2×(-3)+3×(-3)2+…+n×(-3)n-1,
-3Sn=-3+2×(-3)2+3×(-3)3+…+n×(-3)n,
两式相减,得
4Sn=1+(-3)+(-3)2+…+(-3)n-1-n×(-3)n=
-n×(-3)n,
故Sn=
.
|
| 1 |
| 3 |
∴an=(-
| 1 |
| 3 |
(Ⅱ)bn=
| n+1 |
| 1×2 |
| n+1 |
| 2×3 |
| n+1 |
| n(n+1) |
=(n+1)[
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=(n+1)[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=n.
∴
| bn |
| an |
记数列{
| bn |
| an |
Sn=1+2×(-3)+3×(-3)2+…+n×(-3)n-1,
-3Sn=-3+2×(-3)2+3×(-3)3+…+n×(-3)n,
两式相减,得
4Sn=1+(-3)+(-3)2+…+(-3)n-1-n×(-3)n=
| 1-(-3)n |
| 4 |
故Sn=
| 1-(4n+1)(-3)n |
| 16 |
点评:熟练掌握等比数列的通项公式及其前n项和公式、裂项求和、错位相减法是解题的关键.
练习册系列答案
相关题目