题目内容
已知数列{an}满足:a1=
,且对任意的正整数m、n,都有am+n=am•an,若数列{an}的前n项和为Sn,则
Sn等于( )
| 1 |
| 3 |
| lim |
| n→∞ |
A.
| B.
| C.
| D.2 |
数列{an}满足:a1=
,且对任意正整数m,n都有am+n=am•an
∴a2=a1+1=a1•a1=
,an+1=an•a1=
an,
∴数列{an}是首项为
,公比为
的等比数列.
Sn=
(a1+a2+…+an)=
=
,
故选A.
| 1 |
| 3 |
∴a2=a1+1=a1•a1=
| 1 |
| 9 |
| 1 |
| 3 |
∴数列{an}是首项为
| 1 |
| 3 |
| 1 |
| 3 |
| lim |
| n→∞ |
| lim |
| n→∞ |
| a1 |
| 1-q |
| 1 |
| 2 |
故选A.
练习册系列答案
相关题目