题目内容

已知向量
a
b
c
满足
a
+
b
+
c
=0,且
a
c
的夹角为60°,|b|=
3
|a|
,则tan<
a
b
≥(  )
分析:
a
+
b
+
c
=0,|
b
|= 
3
|
a
|
可得
b
2
=
a
2
+
c
2
+2
a
c
,从而可得|
a
|=|
c
|
,代入
a
b
=
a
•(-
a
-
c
)可求,进而可求cos
a
b
 >
=
a
b
|
a
||
b
|
.可求
解答:解:∵
a
+
b
+
c
=0,|
b
|= 
3
|
a
|

b
=-
a
-
c

b
2
=
a
2
+
c
2
+2
a
c
=
a
2
 + 
c
2
 +2|
a
||
c
|cos60°
=3
a
2

|
a
|=|
c
|

a
b
=
a
•(-
a
-
c
)=-
a
2
-
a
c
=-|
a
|
2
-|
a
|•|
a
|•cos60°=-
3
2
|
a
|
2

∴cos
a
b
 >
=
a
b
|
a
||
b
|
=
-
3
2
a
2
3
|
a
||
a
|
=-
3
2

0≤<
a
b
>≤π

a
b
>=
6

tan<
a
b
 >=-
3
3

故选 C.
点评:本题考查两个向量的数量积的定义及向量的数量积的性质的应用,向量的夹角公式的应用,属于向量知识的简单应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网