题目内容
已知向量
,
,
满足
+
+
=0,且
与
的夹角为60°,|b|=
|a|,则tan<
,
≥( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| c |
| 3 |
| a |
| b |
分析:由
+
+
=0,|
|=
|
|可得
2=
2+
2+2
•
,从而可得|
|=|
|,代入
•
=
•(-
-
)可求,进而可求cos<
,
>=
.可求
| a |
| b |
| c |
| b |
| 3 |
| a |
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| b |
| a |
| a |
| c |
| a |
| b |
| ||||
|
|
解答:解:∵
+
+
=0,|
|=
|
|
∴
=-
-
∴
2=
2+
2+2
•
=
2 +
2 +2|
||
|cos60°=3
2
∴|
|=|
|
∴
•
=
•(-
-
)=-
2-
•
=-|
|2-|
|•|
|•cos60°=-
|
|2
∴cos<
,
>=
=
=-
∵0≤<
,
>≤π
∴<
,
>=
∴tan<
,
>=-
故选 C.
| a |
| b |
| c |
| b |
| 3 |
| a |
∴
| b |
| a |
| c |
∴
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
| c |
| a |
∴|
| a |
| c |
∴
| a |
| b |
| a |
| a |
| c |
| a |
| a |
| c |
| a |
| a |
| a |
| 3 |
| 2 |
| a |
∴cos<
| a |
| b |
| ||||
|
|
-
| ||||||
|
| ||
| 2 |
∵0≤<
| a |
| b |
∴<
| a |
| b |
| 5π |
| 6 |
∴tan<
| a |
| b |
| ||
| 3 |
故选 C.
点评:本题考查两个向量的数量积的定义及向量的数量积的性质的应用,向量的夹角公式的应用,属于向量知识的简单应用.
练习册系列答案
相关题目