题目内容
已知等差数列{an}的前 n 项和为Sn,令bn=
,且a4b4=
,S6-S3=15,Tn=b1+b2+…+bn.
求:①数列{bn}的通项公式; ②求Tn.
| 1 |
| Sn |
| 2 |
| 5 |
求:①数列{bn}的通项公式; ②求Tn.
解(1)设{an}的首项为a1,公差为d,
则a4=a1+3d,S3=3a1+3d,S4=4a1+6d,S6=6a1+15d,b4=
,
∴
=
①…(4分)
又(6a1+15d)-(3a1+3d)=15②
由①②得a1=d=1…(6分)
∴Sn=
∴bn=
…(8分)
(2)bn=
=2(
-
)…(10分)
∴Tn=2(1-
+
-
+
-
+…+
-
)=2(1-
)=
…(12分)
则a4=a1+3d,S3=3a1+3d,S4=4a1+6d,S6=6a1+15d,b4=
| 1 |
| 4a1+6d |
∴
| a1+3d |
| 4a1+6d |
| 2 |
| 5 |
又(6a1+15d)-(3a1+3d)=15②
由①②得a1=d=1…(6分)
∴Sn=
| n(n+1) |
| 2 |
| 2 |
| n(n+1) |
(2)bn=
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目