题目内容
设函数f(x),g(x)在[a,b]上连续且f(a)=g(a),在(a,b)上可导且f′(x)>g′(x),则当a<x<b时,有( )
| A.f(x)>g(x) | B.f(x)<g(x) |
| C.f(x)+g(a)>g(x)+f(a) | D.f(x)+g(b)>g(x)+g(b) |
设F(x)=f(x)-g(x),则F(a)=f(a)-g(a)=0.
F′(x)=f′(x)-g′(x)>0,
∴F(x)在给定的区(a,b)上是增函数.
∴当x>a时,F(x)>F(a),
即f(x)-g(x)>0,f(x)>g(x),
故选A.
F′(x)=f′(x)-g′(x)>0,
∴F(x)在给定的区(a,b)上是增函数.
∴当x>a时,F(x)>F(a),
即f(x)-g(x)>0,f(x)>g(x),
故选A.
练习册系列答案
相关题目