题目内容
已知等差数列{an}满足a2=0,a6+a8=-10
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
| an |
| 2n-1 |
(I)设等差数列{an}的公差为d,由已知条件可得
,
解得:
,
故数列{an}的通项公式为an=2-n;
(II)设数列{
}的前n项和为Sn,即Sn=a1+
+…+
①,故S1=1,
=
+
+…+
②,
当n>1时,①-②得:
=a1+
+…+
-
=1-(
+
+…+
)-
=1-(1-
)-
=
,
所以Sn=
,
综上,数列{
}的前n项和Sn=
.
|
解得:
|
故数列{an}的通项公式为an=2-n;
(II)设数列{
| an |
| 2n-1 |
| a2 |
| 2 |
| an |
| 2n-1 |
| Sn |
| 2 |
| a1 |
| 2 |
| a2 |
| 4 |
| an |
| 2n |
当n>1时,①-②得:
| Sn |
| 2 |
| a2-a1 |
| 2 |
| an-an-1 |
| 2n-1 |
| an |
| 2n |
=1-(
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 2-n |
| 2n |
=1-(1-
| 1 |
| 2n-1 |
| 2-n |
| 2n |
| n |
| 2n |
所以Sn=
| n |
| 2n-1 |
综上,数列{
| an |
| 2n-1 |
| n |
| 2n-1 |
练习册系列答案
相关题目