题目内容
定义在R上的函数f(x)满足f(4)=1.f'(x)为f(x)的导函数,已知函数y=f'(x)的图象如右图所示.若两正数a,b满足f(2a+b)<1,则
的取值范围是
- A.

- B.(
) - C.(
,3) - D.(3,+∞)
C
分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围得到答案.
解答:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增
∵两正数a,b满足f(2a+b)<1,
∴0<2a+b<4,∴b<4-2a,0<a<2
∴
<
<
<-2+
∵0<a<2,∴
<-2+
<3,
故选C.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围得到答案.
解答:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增
∵两正数a,b满足f(2a+b)<1,
∴0<2a+b<4,∴b<4-2a,0<a<2
∴
∵0<a<2,∴
故选C.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目