题目内容
若{an}是等差数列,首项a1>0,a23+a24>0,a23•a24<0,则使前n项和Sn>0成立的最大自然数n是
- A.46
- B.47
- C.48
- D.49
A
分析:首先判断出a23>0,a24<0,进而a1+a46=a23+a24>0,所以可得答案.
解答:∵{an}是等差数列,并且a1>0,a23+a24>0,a23•a24<0
可知{an}中,a23>0,a24<0,∴a1+a46=a23+a24>0
故使前n项和Sn>0成立的最大自然数n是46,
故选A
点评:等差数列的性质灵活解题时技巧性强,根据等差数列的概念和公式,可以推导出一些重要而便于使用的变形公式.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.
分析:首先判断出a23>0,a24<0,进而a1+a46=a23+a24>0,所以可得答案.
解答:∵{an}是等差数列,并且a1>0,a23+a24>0,a23•a24<0
可知{an}中,a23>0,a24<0,∴a1+a46=a23+a24>0
故使前n项和Sn>0成立的最大自然数n是46,
故选A
点评:等差数列的性质灵活解题时技巧性强,根据等差数列的概念和公式,可以推导出一些重要而便于使用的变形公式.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.
练习册系列答案
相关题目