题目内容

已知三棱锥S-ABC的底面是正三角形,点A在侧面SBC上的射影H是△SBC的垂心,SA=a,则此三棱锥体积最大值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:由已知中点A在侧面SBC上的射影H是△SBC的垂心,我们易证明出三棱锥S-ABC的三条侧棱也相等,则三棱锥S-ABC的三条侧棱互相垂直时,体积取最大值,代入体积公式,即可求出答案.
解答:点A在侧面SBC上的射影H是三角形SBC的垂心,AD为BC边上的高
∴SA⊥BC,SC⊥AB.
设O为S在底面的射影,
则BC⊥面SAD,则O一定在AD上,
AB⊥SC,AB⊥SO,所以CO⊥AB,
所以O是底面ABC的垂心.也是外心,
∴SA=SB=SC=a.
则当SA,SB,SC互相垂直时体积最大
此时V==
故选D
点评:本题考查的点是三棱锥的体积及三角形的垂心,其中根据已知条件,证明出三棱锥S-ABC的三条侧棱也相等,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网