题目内容

已知函数f(x)= 若f(2-x2)>f(x),则实数x的取值范围是( )
A.(-∞,-1)∪(2,+∞)
B.(-∞,-2)∪(1,+∞)
C.(-1,2)
D.(-2,1)
【答案】分析:由x=0时分段函数两个表达式对应的函数值相等,可得函数图象是一条连续的曲线.结合对数函数和幂函数f(x)=x3的单调性,可得函数f(x)是定义在R上的增函数,由此将原不等式化简为2-x2>x,不难解出实数x的取值范围.
解答:解:∵当x=0时,两个表达式对应的函数值都为零
∴函数的图象是一条连续的曲线
∵当x≤0时,函数f(x)=x3为增函数;当x>0时,f(x)=ln(x+1)也是增函数
∴函数f(x)是定义在R上的增函数
因此,不等式f(2-x2)>f(x)等价于2-x2>x,
即x2+x-2<0,解之得-2<x<1,
故选D
点评:本题给出含有对数函数的分段函数,求不等式的解集.着重考查了对数函数、幂函数的单调性和函数的图象与性质等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网