题目内容
已知等比数列{an}各项均为正数,且a1+a2=20,a3=64,设bn=
log2an.
(1)求数列{an}和{bn}的通项公式;
(2)记Tn=
+
+
+…+
,求Tn.
| 1 |
| 2 |
(1)求数列{an}和{bn}的通项公式;
(2)记Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn-1 |
分析:(1)因为数列{an}是各项均为正数的等比数列,且a1+a2=20,a3=64,可把a1,a2,a3均用a1和q表示,求出a1和q,再代入等比数列的通项公式即可.
(2)根据bn=
log2an和(Ⅰ)中所求数列{an}的通项公式,可求出数列{bn}的通项公式,代入利用裂项求和即可求出
(2)根据bn=
| 1 |
| 2 |
解答:解::(Ⅰ)因为数列{an}是各项均为正数的等比数列,且a1+a2=20,a3=64,
所以
解得a1=4,q=4
∴an=4n,bn=
log2an=n
(2)∵Tn=
+
+
+…+
=
+
+…+
=1-
+
-
+…+
-
=1-
=
所以
|
解得a1=4,q=4
∴an=4n,bn=
| 1 |
| 2 |
(2)∵Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn-1 |
=
| 1 |
| 1•2 |
| 1 |
| 2•3 |
| 1 |
| n(n-1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=1-
| 1 |
| n |
| n-1 |
| n |
点评:本题考查了等比数列通项公式的求法,以及等差数列的前n项和公式的应用,及裂项求和方法的应用,属必须掌握的内容.
练习册系列答案
相关题目