题目内容
已知函数f(x)=
x3+
x2,数列{an}的前n项和为Sn,且Sn=f'(n)(n∈N*).
(Ⅰ)求通项an;
(Ⅱ)令bn=2n•an,求数列{bn}的前n项和Tn.
| 1 |
| 6 |
| 1 |
| 4 |
(Ⅰ)求通项an;
(Ⅱ)令bn=2n•an,求数列{bn}的前n项和Tn.
分析:(Ⅰ)由题意可得Sn=
n2+
n,由an=
可求通项an;
(Ⅱ)Tn=1×21+2×22+…+n×2n,由其特点可知:数列的每一项都是由等差数列里的项与等比数列里的项的成绩构成的,用错位相减法可求和.
| 1 |
| 2 |
| 1 |
| 2 |
|
(Ⅱ)Tn=1×21+2×22+…+n×2n,由其特点可知:数列的每一项都是由等差数列里的项与等比数列里的项的成绩构成的,用错位相减法可求和.
解答:解:(Ⅰ)函数f(x)=
x3+
x2,则f′(x)=
x2+
x,Sn=f'(n)=
n2+
n,
当n≥2时,an=Sn-Sn-1=
n2+
n-
(n-1)2-
(n-1)=n;
当n=1时,a1=S1=1,符合上式,
故an=n
(Ⅱ)由题意bn=2n•an=n×2n
∴Tn=1×21+2×22+…+n×2n,两边同乘以2,得
2Tn=1×22+2×23+…+n×2n+1,两式相减得
-Tn=2+(22+23+…+2n)-n×2n+1=
-n×2n+1
=(1-n)×2n+1-2,
∴Tn=(n-1)×2n+1+2
故答案为:(n-1)×2n+1+2
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当n=1时,a1=S1=1,符合上式,
故an=n
(Ⅱ)由题意bn=2n•an=n×2n
∴Tn=1×21+2×22+…+n×2n,两边同乘以2,得
2Tn=1×22+2×23+…+n×2n+1,两式相减得
-Tn=2+(22+23+…+2n)-n×2n+1=
| 2(1-2n) |
| 1-2 |
=(1-n)×2n+1-2,
∴Tn=(n-1)×2n+1+2
故答案为:(n-1)×2n+1+2
点评:本题为数列求和的错位相减法,涉及函数与数列的关系,掌握错位相减法求和是解决问题的关键,属中档题.
练习册系列答案
相关题目