题目内容

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2b﹣c)cosA﹣acosC=0,
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断△ABC的形状,并说明理由.
解:(Ⅰ)∵(2b﹣c)cosA﹣acosC=0,由正弦定理,
得(2sinB﹣sinC)cosA﹣sinAcosC=0,
∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0,
∵0<B<π,∴sinB≠0,∴
∵0<A<π,

(Ⅱ)∵,即
∴bc=3①
由余弦定理可知cosA==
∴b2+c2=6,②
由①②得
∴△ABC为等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网